Probability Distributions: Discrete vs. Continuous
ثبت نشده
چکیده
منابع مشابه
A continuous approximation fitting to the discrete distributions using ODE
The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...
متن کاملClassification and properties of acyclic discrete phase-type distributions based on geometric and shifted geometric distributions
Acyclic phase-type distributions form a versatile model, serving as approximations to many probability distributions in various circumstances. They exhibit special properties and characteristics that usually make their applications attractive. Compared to acyclic continuous phase-type (ACPH) distributions, acyclic discrete phase-type (ADPH) distributions and their subclasses (ADPH family) have ...
متن کاملGenerating discrete analogues of continuous probability distributions-A survey of methods and constructions
In this paper a comprehensive survey of the different methods of generating discrete probability distributions as analogues of continuous probability distributions is presented along with their applications in construction of new discrete distributions. The methods are classified based on different criterion of discretization.
متن کاملOn discrete a-unimodal and a-monotone distributions
Unimodality is one of the building structures of distributions that like skewness, kurtosis and symmetry is visible in the shape of a function. Comparing two different distributions, can be a very difficult task. But if both the distributions are of the same types, for example both are unimodal, for comparison we may just compare the modes, dispersions and skewness. So, the concept of unimodali...
متن کاملStein’s method for comparison of univariate distributions
We propose a new general version of Stein’s method for univariate distributions. In particular we propose a canonical definition of the Stein operator of a probability distribution which is based on a linear difference or differential-type operator. The resulting Stein identity highlights the unifying theme behind the literature on Stein’s method (both for continuous and discrete distributions)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016